In thi(S) work, we extend the exi(S)ting local fractional (S)umudu decompo(S)ition method to (S)olve the (S)tyle="font-(S)tyle:inherit;color:rgb(255,0,120);">NONLINEAR local fractional (S)tyle="font-(S)tyle:inherit;color:rgb(255,0,120);">PARTIAL (S)tyle="font-(S)tyle:inherit;color:rgb(255,0,120);">DIFFERENTIAL (S)tyle="font-(S)tyle:inherit;color:rgb(255,0,120);">EQUATION(S). Then, we apply thi(S) new algorithm to re(S)olve the (S)tyle="font-(S)tyle:inherit;color:rgb(255,0,120);">NONLINEAR local fractional ga(S) dynamic(S) (S)tyle="font-(S)tyle:inherit;color:rgb(255,0,120);">EQUATION and (S)tyle="font-(S)tyle:inherit;color:rgb(255,0,120);">NONLINEAR local fractional Klein-Gordon (S)tyle="font-(S)tyle:inherit;color:rgb(255,0,120);">EQUATION, (S)o we get the de(S)ired non-differentiable exact (S)olution(S). The (S)tep(S) to (S)olve the example(S) and the re(S)ult(S) obtained, (S)howed the flexibility of applying thi(S) algorithm, and therefore, it can be applied to (S)imilar example(S).